Scaler
- class Scaler(self, algorithm: Literal['standard', 'minmax', 'maxabs', 'robust', 'normalizer', 'power', 'quantile', 'quantile_normal'] = 'standard', **kwargs)
Scaler Wrapper class - parent class Data
Parameters |
|
Attributes |
|
Example
>>> from sam_ml.data.preprocessing import Scaler
>>>
>>> model = Scaler()
>>> print(model)
Scaler()
Methods
Method |
Description |
---|---|
Function to get the parameter from the transformer instance |
|
Function to get the possible parameter values for the class |
|
Function to scale/normalise data |
|
Function to set the parameter of the transformer instance |
- Scaler.get_params(deep: bool = True) dict
Function to get the parameter from the transformer instance
Parameters
- deepbool, default=True
If True, will return the parameters for this estimator and contained sub-objects that are estimators
Returns
- params: dict
parameter names mapped to their values
- static Scaler.params() dict
Function to get the possible parameter values for the class
Returns
- paramdict
possible values for the parameter “algorithm”
Examples
>>> # get possible parameters >>> from sam_ml.data.preprocessing import Scaler >>> >>> # first way without class object >>> params1 = Scaler.params() >>> print(params1) {"algorithm": ["standard", ...]} >>> # second way with class object >>> model = Scaler() >>> params2 = model.params() >>> print(params2) {"algorithm": ["standard", ...]}
- Scaler.scale(data: DataFrame, train_on: bool = True) DataFrame
Function to scale/normalise data
Parameters
- datapd.DataFrame
data that shall be scaled
- train_onbool, defautl=True
If
True
, the estimator instance will fit_transform. Otherwise, just transform
Returns
- scaled_dfpd.DataFrame
Dataframe with scaled data
Examples
>>> # load data (replace with own data) >>> import pandas as pd >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> df = load_iris() >>> X, y = pd.DataFrame(df.data, columns=df.feature_names), pd.Series(df.target) >>> x_train, x_test, y_train, y_test = train_test_split(X,y, train_size=0.80, random_state=42) >>> >>> # scale data >>> from sam_ml.data.preprocessing import Scaler >>> >>> model = Scaler() >>> x_train_scaled = model.scale(x_train) # train scaler >>> x_test_scaled = model.scale(x_test, train_on=False) # scale test data >>> print("before scaling:") >>> print(x_train.iloc[0]) >>> print() >>> print("after scaling:") >>> print(x_train_scaled.iloc[0]) before scaling: sepal length (cm) 4.6 sepal width (cm) 3.6 petal length (cm) 1.0 petal width (cm) 0.2 Name: 22, dtype: float64 after scaling: sepal length (cm) -1.473937 sepal width (cm) 1.203658 petal length (cm) -1.562535 petal width (cm) -1.312603 Name: 0, dtype: float64