XGBRegressor (XGBR)
===================
.. class:: XGBR(self, model_name: str = 'XGBRegressor', n_jobs: int = -1, random_state: int = 42, **kwargs)
XGBoostRegressor Wrapper class - parent class :class:`Regressor`
.. list-table::
:widths: 25 75
:header-rows: 0
* - Parameters
-
random_state : int, default=42
random_state for model
* - Attributes
-
cv_scores : dict[str, float]
dictionary with cross validation results
feature_names : list[str]
names of all the features that the model saw during training. Is empty if model was not fitted yet.
grid : ConfigurationSpace
hyperparameter tuning grid of the model
model : model object
model with 'fit', 'predict', 'set_params', and 'get_params' method (see sklearn API)
model_name : str
name of the model. Used in loading bars and dictionaries as identifier of the model
model_type : str
kind of estimator (e.g. 'RFC' for RandomForestClassifier)
rCVsearch_results : pd.DataFrame or None
results from randomCV hyperparameter tuning. Is ``None`` if randomCVsearch was not used yet.
train_score : float
train score value
train_time : str
train time in format: "0:00:00" (hours:minutes:seconds)
.. note::
You can use all parameters of the wrapped model when initialising the wrapper class.
.. raw:: html
Example
>>> from sam_ml.models.regressor import XGBR
>>>
>>> model = XGBR()
>>> print(model)
XGBR(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, num_parallel_tree=None, reg_alpha=None, reg_lambda=None, sampling_method=None, scale_pos_weight=None, subsample=None, tree_method=None, validate_parameters=None, verbosity=None, model_name='XGBRegressor')
.. raw:: html
Methods
.. list-table::
:widths: 25 75
:header-rows: 1
* - Method
- Description
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.cross_validation`
- Random split crossvalidation
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.cross_validation_small_data`
- One-vs-all cross validation for small datasets
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.evaluate`
- Function to create multiple scores with predict function of model
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.evaluate_score`
- Function to create a score with predict function of model
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.feature_importance`
- Function to generate a matplotlib plot of the top45 feature importance from the model.
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.fit`
- Function to fit the model
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.fit_warm_start`
- Function to warm_start fit the model
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.get_deepcopy`
- Function to create a deepcopy of object
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.get_params`
- Function to get the parameter from the model object
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.get_random_config`
- Function to generate one grid configuration
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.get_random_configs`
- Function to generate grid configurations
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.load_model`
- Function to load a pickled model class object
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.predict`
- Function to predict with predict-method from model object
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.predict_proba`
- Function to predict with predict_proba-method from model object
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.randomCVsearch`
- Hyperparametertuning with randomCVsearch
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.replace_grid`
- Function to replace self.grid
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.save_model`
- Function to pickle and save the class object
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.set_params`
- Function to set the parameter of the model object
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.smac_search`
- Hyperparametertuning with SMAC library HyperparameterOptimizationFacade [can only be used in the sam_ml version with swig]
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.train`
- Function to train the model
* - :meth:`~sam_ml.models.regressor.XGBoostRegressor.XGBR.train_warm_start`
- Function to warm_start train the model
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.cross_validation
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.cross_validation_small_data
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.evaluate
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.evaluate_score
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.feature_importance
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.fit
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.fit_warm_start
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.get_deepcopy
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.get_params
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.get_random_config
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.get_random_configs
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.load_model
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.predict
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.predict_proba
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.randomCVsearch
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.replace_grid
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.save_model
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.set_params
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.smac_search
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.train
.. automethod:: sam_ml.models.regressor.XGBoostRegressor.XGBR.train_warm_start