SGDRegressor (SGDR) =================== .. class:: SGDR(self, model_name: str = 'SGDRegressor', random_state: int = 42, **kwargs) SGDRegressor Wrapper class - parent class :class:`Regressor` .. list-table:: :widths: 25 75 :header-rows: 0 * - Parameters - penalty : str or None Specify the norm of the penalty alpha : float Constant that multiplies the regularization term (the higher the value, the stronger the regularization) * - Attributes - cv_scores : dict[str, float] dictionary with cross validation results feature_names : list[str] names of all the features that the model saw during training. Is empty if model was not fitted yet. grid : ConfigurationSpace hyperparameter tuning grid of the model model : model object model with 'fit', 'predict', 'set_params', and 'get_params' method (see sklearn API) model_name : str name of the model. Used in loading bars and dictionaries as identifier of the model model_type : str kind of estimator (e.g. 'RFC' for RandomForestClassifier) rCVsearch_results : pd.DataFrame or None results from randomCV hyperparameter tuning. Is ``None`` if randomCVsearch was not used yet. train_score : float train score value train_time : str train time in format: "0:00:00" (hours:minutes:seconds) .. note:: You can use all parameters of the wrapped model when initialising the wrapper class. .. raw:: html

Example

>>> from sam_ml.models.regressor import SGDR >>> >>> model = SGDR() >>> print(model) SGDR(model_name='SGDRegressor') .. raw:: html

Methods

.. list-table:: :widths: 25 75 :header-rows: 1 * - Method - Description * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.cross_validation` - Random split crossvalidation * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.cross_validation_small_data` - One-vs-all cross validation for small datasets * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.evaluate` - Function to create multiple scores with predict function of model * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.evaluate_score` - Function to create a score with predict function of model * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.feature_importance` - Function to generate a matplotlib plot of the top45 feature importance from the model. * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.fit` - Function to fit the model * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.fit_warm_start` - Function to warm_start fit the model * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.get_deepcopy` - Function to create a deepcopy of object * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.get_params` - Function to get the parameter from the model object * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.get_random_config` - Function to generate one grid configuration * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.get_random_configs` - Function to generate grid configurations * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.load_model` - Function to load a pickled model class object * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.predict` - Function to predict with predict-method from model object * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.predict_proba` - Function to predict with predict_proba-method from model object * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.randomCVsearch` - Hyperparametertuning with randomCVsearch * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.replace_grid` - Function to replace self.grid * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.save_model` - Function to pickle and save the class object * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.set_params` - Function to set the parameter of the model object * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.smac_search` - Hyperparametertuning with SMAC library HyperparameterOptimizationFacade [can only be used in the sam_ml version with swig] * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.train` - Function to train the model * - :meth:`~sam_ml.models.regressor.SGDRegressor.SGDR.train_warm_start` - Function to warm_start train the model .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.cross_validation .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.cross_validation_small_data .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.evaluate .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.evaluate_score .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.feature_importance .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.fit .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.fit_warm_start .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.get_deepcopy .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.get_params .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.get_random_config .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.get_random_configs .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.load_model .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.predict .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.predict_proba .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.randomCVsearch .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.replace_grid .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.save_model .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.set_params .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.smac_search .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.train .. automethod:: sam_ml.models.regressor.SGDRegressor.SGDR.train_warm_start