BayesianRidge (BYR)
===================
.. class:: BYR(self, model_name: str = 'BayesianRidge', **kwargs)
BayesianRidge Wrapper class - parent class :class:`Regressor`
.. list-table::
:widths: 25 75
:header-rows: 0
* - Parameters
-
alpha_init : float
initial value for alpha (precision of the noise)
lambda_init : float
initial value for lambda (precision of the weights)
* - Attributes
-
cv_scores : dict[str, float]
dictionary with cross validation results
feature_names : list[str]
names of all the features that the model saw during training. Is empty if model was not fitted yet.
grid : ConfigurationSpace
hyperparameter tuning grid of the model
model : model object
model with 'fit', 'predict', 'set_params', and 'get_params' method (see sklearn API)
model_name : str
name of the model. Used in loading bars and dictionaries as identifier of the model
model_type : str
kind of estimator (e.g. 'RFC' for RandomForestClassifier)
rCVsearch_results : pd.DataFrame or None
results from randomCV hyperparameter tuning. Is ``None`` if randomCVsearch was not used yet.
train_score : float
train score value
train_time : str
train time in format: "0:00:00" (hours:minutes:seconds)
.. note::
You can use all parameters of the wrapped model when initialising the wrapper class.
.. raw:: html
Example
>>> from sam_ml.models.regressor import BYR
>>>
>>> model = BYR()
>>> print(model)
BYR(model_name='BayesianRidge')
.. raw:: html
Methods
.. list-table::
:widths: 25 75
:header-rows: 1
* - Method
- Description
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.cross_validation`
- Random split crossvalidation
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.cross_validation_small_data`
- One-vs-all cross validation for small datasets
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.evaluate`
- Function to create multiple scores with predict function of model
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.evaluate_score`
- Function to create a score with predict function of model
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.feature_importance`
- Function to generate a matplotlib plot of the top45 feature importance from the model.
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.fit`
- Function to fit the model
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.fit_warm_start`
- Function to warm_start fit the model
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.get_deepcopy`
- Function to create a deepcopy of object
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.get_params`
- Function to get the parameter from the model object
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.get_random_config`
- Function to generate one grid configuration
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.get_random_configs`
- Function to generate grid configurations
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.load_model`
- Function to load a pickled model class object
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.predict`
- Function to predict with predict-method from model object
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.predict_proba`
- Function to predict with predict_proba-method from model object
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.randomCVsearch`
- Hyperparametertuning with randomCVsearch
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.replace_grid`
- Function to replace self.grid
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.save_model`
- Function to pickle and save the class object
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.set_params`
- Function to set the parameter of the model object
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.smac_search`
- Hyperparametertuning with SMAC library HyperparameterOptimizationFacade [can only be used in the sam_ml version with swig]
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.train`
- Function to train the model
* - :meth:`~sam_ml.models.regressor.BayesianRidge.BYR.train_warm_start`
- Function to warm_start train the model
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.cross_validation
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.cross_validation_small_data
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.evaluate
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.evaluate_score
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.feature_importance
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.fit
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.fit_warm_start
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.get_deepcopy
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.get_params
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.get_random_config
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.get_random_configs
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.load_model
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.predict
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.predict_proba
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.randomCVsearch
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.replace_grid
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.save_model
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.set_params
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.smac_search
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.train
.. automethod:: sam_ml.models.regressor.BayesianRidge.BYR.train_warm_start