Sampler ======= .. class:: Sampler(self, algorithm: Literal['SMOTE', 'BSMOTE', 'rus', 'ros', 'tl', 'nm', 'cc', 'oss'] = 'ros', random_state: int = 42, sampling_strategy: str | float = 'auto', **kwargs) sample algorithm Wrapper class - parent class :class:`Data` .. list-table:: :widths: 25 75 :header-rows: 0 * - Parameters - algorithm : {"SMOTE", "BSMOTE", "rus", "ros", "tl", "nm", "cc", "oss"}, defautl="ros which sampling algorithm to use: - SMOTE: Synthetic Minority Oversampling Technique (upsampling) - BSMOTE: BorderlineSMOTE (upsampling) - ros: RandomOverSampler (upsampling) (default) - rus: RandomUnderSampler (downsampling) - tl: TomekLinks (cleaning downsampling) - nm: NearMiss (downsampling) - cc: ClusterCentroids (downsampling) - oss: OneSidedSelection (cleaning downsampling) random_state : int, default=42 seed for random sampling sampling_strategy : str or float, default="auto" percentage of class size of minority in relation to the class size of the majority \*\*kwargs: additional parameters for sampler * - Attributes - algorithm : str name of the used algorithm transformer : transformer instance transformer instance (e.g. StandardScaler) .. raw:: html