Embeddings_builder ================== .. class:: Embeddings_builder(self, algorithm: Literal['bert', 'count', 'tfidf'] = 'tfidf', **kwargs) Vectorizer Wrapper class - parent class :class:`Data` .. list-table:: :widths: 25 75 :header-rows: 0 * - Parameters - algorithm : {"bert", "count", "tfidf"}, default="tfidf which vectorizing algorithm to use: - 'count': CountVectorizer (default) - 'tfidf': TfidfVectorizer - 'bert': SentenceTransformer("quora-distilbert-multilingual") \*\*kwargs: additional parameters for CountVectorizer or TfidfVectorizer * - Attributes - algorithm : str name of the used algorithm transformer : transformer instance transformer instance (e.g. StandardScaler) .. raw:: html

Example

>>> from sam_ml.data.preprocessing import Embeddings_builder >>> >>> model = Embeddings_builder() >>> print(model) Embeddings_builder() .. raw:: html

Methods

.. list-table:: :widths: 25 75 :header-rows: 1 * - Method - Description * - :meth:`~sam_ml.data.preprocessing.embeddings.Embeddings_builder.create_parallel_bert_embeddings` - Function to create in parallel embeddings of given strings with bert model * - :meth:`~sam_ml.data.preprocessing.embeddings.Embeddings_builder.get_params` - Function to get the parameter from the transformer instance * - :meth:`~sam_ml.data.preprocessing.embeddings.Embeddings_builder.params` - Function to get the possible parameter values for the class * - :meth:`~sam_ml.data.preprocessing.embeddings.Embeddings_builder.set_params` - Function to set the parameter of the transformer instance * - :meth:`~sam_ml.data.preprocessing.embeddings.Embeddings_builder.vectorize` - Function to vectorize text data column .. automethod:: sam_ml.data.preprocessing.embeddings.Embeddings_builder.create_parallel_bert_embeddings .. automethod:: sam_ml.data.preprocessing.embeddings.Embeddings_builder.get_params .. automethod:: sam_ml.data.preprocessing.embeddings.Embeddings_builder.params .. automethod:: sam_ml.data.preprocessing.embeddings.Embeddings_builder.set_params .. automethod:: sam_ml.data.preprocessing.embeddings.Embeddings_builder.vectorize