XGBClassifier (XGBC) ==================== .. class:: XGBC(self, model_name: str = 'XGBClassifier', n_jobs: str = -1, random_state: int = 42, **kwargs) XGBoostClassifier Wrapper class - parent class :class:`Classifier` .. list-table:: :widths: 25 75 :header-rows: 0 * - Parameters - random_state : int, default=42 random_state for model * - Attributes - cv_scores : dict[str, float] dictionary with cross validation results feature_names : list[str] names of all the features that the model saw during training. Is empty if model was not fitted yet. grid : ConfigurationSpace hyperparameter tuning grid of the model model : model object model with 'fit', 'predict', 'set_params', and 'get_params' method (see sklearn API) model_name : str name of the model. Used in loading bars and dictionaries as identifier of the model model_type : str kind of estimator (e.g. 'RFC' for RandomForestClassifier) rCVsearch_results : pd.DataFrame or None results from randomCV hyperparameter tuning. Is ``None`` if randomCVsearch was not used yet. train_score : float train score value train_time : str train time in format: "0:00:00" (hours:minutes:seconds) .. note:: You can use all parameters of the wrapped model when initialising the wrapper class. .. raw:: html

Example

>>> from sam_ml.models.classifier import XGBC >>> >>> model = XGBC() >>> print(model) XGBC(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, num_parallel_tree=None, reg_alpha=None, reg_lambda=None, sampling_method=None, scale_pos_weight=None, subsample=None, tree_method=None, validate_parameters=None, verbosity=None, model_name='XGBClassifier') .. raw:: html

Methods

.. list-table:: :widths: 25 75 :header-rows: 1 * - Method - Description * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.cross_validation` - Random split crossvalidation * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.cross_validation_small_data` - One-vs-all cross validation for small datasets * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.evaluate` - Function to create multiple scores with predict function of model * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.evaluate_proba` - Function to create multiple scores for binary classification with predict_proba function of model * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.evaluate_score` - Function to create a score with predict function of model * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.evaluate_score_proba` - Function to create a score for binary classification with predict_proba function of model * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.feature_importance` - Function to generate a matplotlib plot of the top45 feature importance from the model. * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.fit` - Function to fit the model * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.fit_warm_start` - Function to warm_start fit the model * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.get_deepcopy` - Function to create a deepcopy of object * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.get_params` - Function to get the parameter from the model object * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.get_random_config` - Function to generate one grid configuration * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.get_random_configs` - Function to generate grid configurations * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.load_model` - Function to load a pickled model class object * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.predict` - Function to predict with predict-method from model object * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.predict_proba` - Function to predict with predict_proba-method from model object * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.randomCVsearch` - Hyperparametertuning with randomCVsearch * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.replace_grid` - Function to replace self.grid * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.save_model` - Function to pickle and save the class object * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.set_params` - Function to set the parameter of the model object * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.smac_search` - Hyperparametertuning with SMAC library HyperparameterOptimizationFacade [can only be used in the sam_ml version with swig] * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.train` - Function to train the model * - :meth:`~sam_ml.models.classifier.XGBoostClassifier.XGBC.train_warm_start` - Function to warm_start train the model .. note:: A lot of methods use parameters for advanced scoring. For additional information on advanced scoring, see :ref:`scoring documentation ` .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.cross_validation .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.cross_validation_small_data .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.evaluate .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.evaluate_proba .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.evaluate_score .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.evaluate_score_proba .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.feature_importance .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.fit .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.fit_warm_start .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.get_deepcopy .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.get_params .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.get_random_config .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.get_random_configs .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.load_model .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.predict .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.predict_proba .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.randomCVsearch .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.replace_grid .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.save_model .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.set_params .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.smac_search .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.train .. automethod:: sam_ml.models.classifier.XGBoostClassifier.XGBC.train_warm_start