LinearSupportVectorClassifier (LSVC) ==================================== .. class:: LSVC(self, model_name: str = 'LinearSupportVectorClassifier', random_state: int = 42, **kwargs) LinearSupportVectorClassifier Wrapper class - parent class :class:`Classifier` .. list-table:: :widths: 25 75 :header-rows: 0 * - Parameters - penalty : str, specifies the norm used in the penalization dual : bool, select the algorithm to either solve the dual or primal optimization problem C : float, inverse of regularization strength max_iter : int, maximum number of iterations taken for the solvers to converge random_state : int, default=42 random_state for model * - Attributes - cv_scores : dict[str, float] dictionary with cross validation results feature_names : list[str] names of all the features that the model saw during training. Is empty if model was not fitted yet. grid : ConfigurationSpace hyperparameter tuning grid of the model model : model object model with 'fit', 'predict', 'set_params', and 'get_params' method (see sklearn API) model_name : str name of the model. Used in loading bars and dictionaries as identifier of the model model_type : str kind of estimator (e.g. 'RFC' for RandomForestClassifier) rCVsearch_results : pd.DataFrame or None results from randomCV hyperparameter tuning. Is ``None`` if randomCVsearch was not used yet. train_score : float train score value train_time : str train time in format: "0:00:00" (hours:minutes:seconds) .. note:: You can use all parameters of the wrapped model when initialising the wrapper class. .. raw:: html

Example

>>> from sam_ml.models.classifier import LSVC >>> >>> model = LSVC() >>> print(model) LSVC(model_name='LinearSupportVectorClassifier') .. raw:: html

Methods

.. list-table:: :widths: 25 75 :header-rows: 1 * - Method - Description * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.cross_validation` - Random split crossvalidation * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.cross_validation_small_data` - One-vs-all cross validation for small datasets * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.evaluate` - Function to create multiple scores with predict function of model * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.evaluate_proba` - Function to create multiple scores for binary classification with predict_proba function of model * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.evaluate_score` - Function to create a score with predict function of model * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.evaluate_score_proba` - Function to create a score for binary classification with predict_proba function of model * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.feature_importance` - Function to generate a matplotlib plot of the top45 feature importance from the model. * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.fit` - Function to fit the model * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.fit_warm_start` - Function to warm_start fit the model * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.get_deepcopy` - Function to create a deepcopy of object * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.get_params` - Function to get the parameter from the model object * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.get_random_config` - Function to generate one grid configuration * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.get_random_configs` - Function to generate grid configurations * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.load_model` - Function to load a pickled model class object * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.predict` - Function to predict with predict-method from model object * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.predict_proba` - Function to predict with predict_proba-method from model object * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.randomCVsearch` - Hyperparametertuning with randomCVsearch * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.replace_grid` - Function to replace self.grid * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.save_model` - Function to pickle and save the class object * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.set_params` - Function to set the parameter of the model object * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.smac_search` - Hyperparametertuning with SMAC library HyperparameterOptimizationFacade [can only be used in the sam_ml version with swig] * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.train` - Function to train the model * - :meth:`~sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.train_warm_start` - Function to warm_start train the model .. note:: A lot of methods use parameters for advanced scoring. For additional information on advanced scoring, see :ref:`scoring documentation ` .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.cross_validation .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.cross_validation_small_data .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.evaluate .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.evaluate_proba .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.evaluate_score .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.evaluate_score_proba .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.feature_importance .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.fit .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.fit_warm_start .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.get_deepcopy .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.get_params .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.get_random_config .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.get_random_configs .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.load_model .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.predict .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.predict_proba .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.randomCVsearch .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.replace_grid .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.save_model .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.set_params .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.smac_search .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.train .. automethod:: sam_ml.models.classifier.LinearSupportVectorClassifier.LSVC.train_warm_start