BasePipeline class ================== .. class:: BasePipeline(self, model: sam_ml.models.main_classifier.Classifier | sam_ml.models.main_regressor.Regressor, vectorizer: str | sam_ml.data.preprocessing.embeddings.Embeddings_builder | None, scaler: str | sam_ml.data.preprocessing.scaler.Scaler | None, selector: str | tuple[str, int] | sam_ml.data.preprocessing.feature_selection.Selector | None, sampler: str | sam_ml.data.preprocessing.sampling.Sampler | sam_ml.data.preprocessing.sampling_pipeline.SamplerPipeline | None, model_name: str) BasePipeline class - parent class :class:`Model` .. list-table:: :widths: 25 75 :header-rows: 0 * - Parameters - model : Classifier or Regressor class object Model used in pipeline (:class:`Classifier` or :class:`Regressor`) vectorizer : str, Embeddings_builder, or None object or algorithm of :class:`Embeddings_builder` class which will be used for automatic string column vectorizing (None for no vectorizing) scaler : str, Scaler, or None object or algorithm of :class:`Scaler` class for scaling the data (None for no scaling) selector : str, Selector, or None object, tuple of algorithm and feature number, or algorithm of :class:`Selector` class for feature selection (None for no selecting) sampler : str, Sampler, SamplerPipeline, or None object or algorithm of :class:`Sampler` / :class:`SamplerPipeline` class for sampling the train data (None for no sampling) model_name : str name of the model * - Attributes - cv_scores : dict[str, float] dictionary with cross validation results data_classes_trained : bool If ``True``, the preprocessing step classes are fitted. Important for methods that use warm_start feature_names : list[str] names of all the features that the model saw during training. Is empty if model was not fitted yet. grid : ConfigurationSpace hyperparameter tuning grid of the model model : model object model with 'fit', 'predict', 'set_params', and 'get_params' method (see sklearn API) model_name : str name of the model. Used in loading bars and dictionaries as identifier of the model model_type : str kind of estimator (e.g. 'RFC' for RandomForestClassifier) rCVsearch_results : pd.DataFrame or None results from randomCV hyperparameter tuning. Is ``None`` if randomCVsearch was not used yet. steps : list[tuple[str, any]] list with preprocessing + model pipeline steps as tuples string_columns : list[str] list with detected string columns that are used in auto-vectorizing train_score : float train score value train_time : str train time in format: "0:00:00" (hours:minutes:seconds) .. raw:: html

Methods

.. list-table:: :widths: 25 75 :header-rows: 1 * - Method - Description * - :meth:`~sam_ml.models.main_pipeline.BasePipeline._auto_vectorizing` - Function to detect string columns and creating a vectorizer for each, and vectorize them * - :meth:`~sam_ml.models.main_pipeline.BasePipeline._changed_parameters` - Function to get parameters that differ from the default ones * - :meth:`~sam_ml.models.main_pipeline.BasePipeline._data_prepare` - Function to run data class objects on data to prepare them for the model * - :meth:`~sam_ml.models.main_pipeline.BasePipeline._get_all_scores` - Function to create multiple scores for given y_true-y_pred pairs * - :meth:`~sam_ml.models.main_pipeline.BasePipeline._get_score` - Calculate a score for given y true and y prediction values * - :meth:`~sam_ml.models.main_pipeline.BasePipeline._inherit_from_model` - Function to inherit methods and attributes from model * - :meth:`~sam_ml.models.main_pipeline.BasePipeline._make_cv_scores` - Function to create from the crossvalidation results a dictionary * - :meth:`~sam_ml.models.main_pipeline.BasePipeline._make_scorer` - Function to create a dictionary with scorer for the crossvalidation * - :meth:`~sam_ml.models.main_pipeline.BasePipeline._print_scores` - Function to print out the values of a dictionary * - :meth:`~sam_ml.models.main_pipeline.BasePipeline._validate_component` - Function to create the data preprocessing steps * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.cross_validation` - Random split crossvalidation * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.cross_validation_small_data` - One-vs-all cross validation for small datasets * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.evaluate` - Function to create multiple scores with predict function of model * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.evaluate_score` - Function to create a score with self.__get_score of model * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.feature_importance` - Function to generate a matplotlib plot of the top45 feature importance from the model. * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.fit` - Function to fit the model * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.fit_warm_start` - Function to warm_start fit the model * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.get_deepcopy` - Function to create a deepcopy of object * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.get_params` - Function to get the parameter from the model object * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.get_random_config` - Function to generate one grid configuration * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.get_random_configs` - Function to generate grid configurations * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.load_model` - Function to load a pickled model class object * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.predict` - Function to predict with predict-method from model object * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.predict_proba` - Function to predict with predict_proba-method from model object * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.randomCVsearch` - Hyperparametertuning with randomCVsearch * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.replace_grid` - Function to replace self.grid * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.save_model` - Function to pickle and save the class object * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.set_params` - Function to set the parameter of the model object * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.smac_search` - Hyperparametertuning with SMAC library HyperparameterOptimizationFacade [can only be used in the sam_ml version with swig] * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.train` - Function to train the model * - :meth:`~sam_ml.models.main_pipeline.BasePipeline.train_warm_start` - Function to warm_start train the model .. automethod:: sam_ml.models.main_pipeline.BasePipeline._auto_vectorizing .. automethod:: sam_ml.models.main_pipeline.BasePipeline._changed_parameters .. automethod:: sam_ml.models.main_pipeline.BasePipeline._data_prepare .. automethod:: sam_ml.models.main_pipeline.BasePipeline._get_all_scores .. automethod:: sam_ml.models.main_pipeline.BasePipeline._get_score .. automethod:: sam_ml.models.main_pipeline.BasePipeline._inherit_from_model .. automethod:: sam_ml.models.main_pipeline.BasePipeline._make_cv_scores .. automethod:: sam_ml.models.main_pipeline.BasePipeline._make_scorer .. automethod:: sam_ml.models.main_pipeline.BasePipeline._print_scores .. automethod:: sam_ml.models.main_pipeline.BasePipeline._validate_component .. automethod:: sam_ml.models.main_pipeline.BasePipeline.cross_validation .. automethod:: sam_ml.models.main_pipeline.BasePipeline.cross_validation_small_data .. automethod:: sam_ml.models.main_pipeline.BasePipeline.evaluate .. automethod:: sam_ml.models.main_pipeline.BasePipeline.evaluate_score .. automethod:: sam_ml.models.main_pipeline.BasePipeline.feature_importance .. automethod:: sam_ml.models.main_pipeline.BasePipeline.fit .. automethod:: sam_ml.models.main_pipeline.BasePipeline.fit_warm_start .. automethod:: sam_ml.models.main_pipeline.BasePipeline.get_deepcopy .. automethod:: sam_ml.models.main_pipeline.BasePipeline.get_params .. automethod:: sam_ml.models.main_pipeline.BasePipeline.get_random_config .. automethod:: sam_ml.models.main_pipeline.BasePipeline.get_random_configs .. automethod:: sam_ml.models.main_pipeline.BasePipeline.load_model .. automethod:: sam_ml.models.main_pipeline.BasePipeline.predict .. automethod:: sam_ml.models.main_pipeline.BasePipeline.predict_proba .. automethod:: sam_ml.models.main_pipeline.BasePipeline.randomCVsearch .. automethod:: sam_ml.models.main_pipeline.BasePipeline.replace_grid .. automethod:: sam_ml.models.main_pipeline.BasePipeline.save_model .. automethod:: sam_ml.models.main_pipeline.BasePipeline.set_params .. automethod:: sam_ml.models.main_pipeline.BasePipeline.smac_search .. automethod:: sam_ml.models.main_pipeline.BasePipeline.train .. automethod:: sam_ml.models.main_pipeline.BasePipeline.train_warm_start